Thông tin chi tiết sản phẩm
Hàng hiệu: PFT
Chứng nhận: ISO9001,AS9100D,ISO13485,ISO45001,IATF16949,ISO14001,RoHS,CE etc.
Điều khoản thanh toán & vận chuyển
Số lượng đặt hàng tối thiểu: 1pcs
Giá bán: 0.19
Thời gian giao hàng: 5-8 ngày
Điều khoản thanh toán: L/C, D/A, D/P, T/T, Western Union, Moneygram
Điện trở nhiệt: |
Đúng |
Màu sắc: |
Phong tục |
Khả năng tương thích: |
Phù hợp với các mô hình máy bay khác nhau |
Xử lý bề mặt: |
Anod hóa |
Kháng ăn mòn: |
Đúng |
Phương pháp sản xuất: |
Gia công CNC |
Vật liệu: |
Nhôm |
Từ khóa: |
Các bộ phận nhôm máy CNC |
Độ chính xác: |
Cao |
Tùy chỉnh: |
Có sẵn |
Quá trình sản xuất: |
Gia công CNC |
Độ bền: |
Cao |
Quá trình sản xuất: |
Gia công CNC |
Sức chịu đựng: |
± 0,01mm |
Điện trở nhiệt: |
Đúng |
Màu sắc: |
Phong tục |
Khả năng tương thích: |
Phù hợp với các mô hình máy bay khác nhau |
Xử lý bề mặt: |
Anod hóa |
Kháng ăn mòn: |
Đúng |
Phương pháp sản xuất: |
Gia công CNC |
Vật liệu: |
Nhôm |
Từ khóa: |
Các bộ phận nhôm máy CNC |
Độ chính xác: |
Cao |
Tùy chỉnh: |
Có sẵn |
Quá trình sản xuất: |
Gia công CNC |
Độ bền: |
Cao |
Quá trình sản xuất: |
Gia công CNC |
Sức chịu đựng: |
± 0,01mm |
In 2025, aerospace manufacturers continue to face increasing demands for turbine blades with higher precision, reduced weight, and greater thermal resistance. CNC machining, particularly in five-axis configurations, has become the dominant approach to meeting these requirements. The objective of this study is to evaluate process methodologies, quantify machining outcomes, and establish reproducible data for use in both industrial and research contexts.
The study employed a parametric model of a standard aerospace turbine blade. Toolpath strategies were generated using Siemens NX, incorporating adaptive step-over algorithms and variable feed rates. Design considerations included minimizing tool deflection and ensuring uniform surface roughness across complex curved geometries.
Baseline tolerance and surface integrity benchmarks were obtained from prior aerospace machining standards [1]. Comparative reference data were drawn from documented industrial case studies and peer-reviewed machining experiments.
A DMG MORI DMU 75 monoBLOCK five-axis machining center was used for all trials. Cutting tools consisted of solid carbide end mills with TiAlN coating, diameters ranging from 6 mm to 12 mm. Workpieces were fabricated from Inconel 718, a widely applied nickel-based superalloy in turbine manufacturing. Data acquisition was supported by in-process dynamometer measurement and 3D optical scanning for dimensional validation.
Experimental results showed that dimensional deviation did not exceed ±8 μm across the airfoil surface (Table 1). Compared with conventional three-axis finishing, the proposed method reduced geometric variance by approximately 27%.
Table 1. Dimensional accuracy results for Inconel 718 turbine blade samples
Sample No. | Max Deviation (μm) | Average Surface Roughness Ra (μm) |
---|---|---|
1 | 7.6 | 0.42 |
2 | 8.1 | 0.45 |
3 | 7.9 | 0.44 |
Surface scanning confirmed consistent roughness with Ra values below 0.45 μm (Fig. 1). Compared to benchmark datasets [2], these values represent a 15% improvement in uniformity, indicating effective toolpath control.
Fig. 1. Optical scan of machined turbine blade surface profile
When benchmarked against existing literature [3], the process exhibited lower residual stresses, attributed to adaptive feed optimization. These outcomes confirm the feasibility of applying the method in serial production environments.
The accuracy and surface quality improvements can be attributed to the integration of adaptive toolpath algorithms and optimized cutting speeds. However, limitations remain in processing time; while dimensional accuracy improved, machining cycle time increased by approximately 8%. Further studies may focus on balancing precision with throughput using hybrid machining techniques or predictive AI-driven parameter adjustment. Industrial implications include higher yield rates in turbine blade manufacturing and reduced rework requirements, directly affecting cost efficiency.
The study demonstrates that optimized five-axis CNC machining provides measurable benefits for turbine blade production, particularly in dimensional accuracy and surface consistency. Results confirm the reliability of adaptive toolpath and cutting parameter integration. Future work may investigate hybrid additive-subtractive approaches and real-time process monitoring for further advancement in aerospace part manufacturing.