logo
Shenzhen Perfect Precision Product Co., Ltd.
các sản phẩm
các sản phẩm
Trang chủ > các sản phẩm > Bộ phận hàng không CNC > Aerospace CNC Machining for Turbine Blades

Aerospace CNC Machining for Turbine Blades

Thông tin chi tiết sản phẩm

Hàng hiệu: PFT

Chứng nhận: ISO9001,AS9100D,ISO13485,ISO45001,IATF16949,ISO14001,RoHS,CE etc.

Điều khoản thanh toán & vận chuyển

Số lượng đặt hàng tối thiểu: 1pcs

Giá bán: 0.19

Thời gian giao hàng: 5-8 ngày

Điều khoản thanh toán: L/C, D/A, D/P, T/T, Western Union, Moneygram

Nhận giá tốt nhất
Làm nổi bật:
Điện trở nhiệt:
Đúng
Màu sắc:
Phong tục
Khả năng tương thích:
Phù hợp với các mô hình máy bay khác nhau
Xử lý bề mặt:
Anod hóa
Kháng ăn mòn:
Đúng
Phương pháp sản xuất:
Gia công CNC
Vật liệu:
Nhôm
Từ khóa:
Các bộ phận nhôm máy CNC
Độ chính xác:
Cao
Tùy chỉnh:
Có sẵn
Quá trình sản xuất:
Gia công CNC
Độ bền:
Cao
Quá trình sản xuất:
Gia công CNC
Sức chịu đựng:
± 0,01mm
Điện trở nhiệt:
Đúng
Màu sắc:
Phong tục
Khả năng tương thích:
Phù hợp với các mô hình máy bay khác nhau
Xử lý bề mặt:
Anod hóa
Kháng ăn mòn:
Đúng
Phương pháp sản xuất:
Gia công CNC
Vật liệu:
Nhôm
Từ khóa:
Các bộ phận nhôm máy CNC
Độ chính xác:
Cao
Tùy chỉnh:
Có sẵn
Quá trình sản xuất:
Gia công CNC
Độ bền:
Cao
Quá trình sản xuất:
Gia công CNC
Sức chịu đựng:
± 0,01mm
Aerospace CNC Machining for Turbine Blades

1 Introduction

In 2025, aerospace manufacturers continue to face increasing demands for turbine blades with higher precision, reduced weight, and greater thermal resistance. CNC machining, particularly in five-axis configurations, has become the dominant approach to meeting these requirements. The objective of this study is to evaluate process methodologies, quantify machining outcomes, and establish reproducible data for use in both industrial and research contexts.


2 Research Methodology

2.1 Design Approach

The study employed a parametric model of a standard aerospace turbine blade. Toolpath strategies were generated using Siemens NX, incorporating adaptive step-over algorithms and variable feed rates. Design considerations included minimizing tool deflection and ensuring uniform surface roughness across complex curved geometries.

2.2 Data Sources

Baseline tolerance and surface integrity benchmarks were obtained from prior aerospace machining standards [1]. Comparative reference data were drawn from documented industrial case studies and peer-reviewed machining experiments.

2.3 Experimental Tools and Models

A DMG MORI DMU 75 monoBLOCK five-axis machining center was used for all trials. Cutting tools consisted of solid carbide end mills with TiAlN coating, diameters ranging from 6 mm to 12 mm. Workpieces were fabricated from Inconel 718, a widely applied nickel-based superalloy in turbine manufacturing. Data acquisition was supported by in-process dynamometer measurement and 3D optical scanning for dimensional validation.


3 Results and Analysis

3.1 Machining Accuracy

Experimental results showed that dimensional deviation did not exceed ±8 μm across the airfoil surface (Table 1). Compared with conventional three-axis finishing, the proposed method reduced geometric variance by approximately 27%.

Table 1. Dimensional accuracy results for Inconel 718 turbine blade samples

Sample No. Max Deviation (μm) Average Surface Roughness Ra (μm)
1 7.6 0.42
2 8.1 0.45
3 7.9 0.44

3.2 Surface Integrity

Surface scanning confirmed consistent roughness with Ra values below 0.45 μm (Fig. 1). Compared to benchmark datasets [2], these values represent a 15% improvement in uniformity, indicating effective toolpath control.

Fig. 1. Optical scan of machined turbine blade surface profile

3.3 Comparative Evaluation

When benchmarked against existing literature [3], the process exhibited lower residual stresses, attributed to adaptive feed optimization. These outcomes confirm the feasibility of applying the method in serial production environments.


4 Discussion

The accuracy and surface quality improvements can be attributed to the integration of adaptive toolpath algorithms and optimized cutting speeds. However, limitations remain in processing time; while dimensional accuracy improved, machining cycle time increased by approximately 8%. Further studies may focus on balancing precision with throughput using hybrid machining techniques or predictive AI-driven parameter adjustment. Industrial implications include higher yield rates in turbine blade manufacturing and reduced rework requirements, directly affecting cost efficiency.


5 Conclusion

The study demonstrates that optimized five-axis CNC machining provides measurable benefits for turbine blade production, particularly in dimensional accuracy and surface consistency. Results confirm the reliability of adaptive toolpath and cutting parameter integration. Future work may investigate hybrid additive-subtractive approaches and real-time process monitoring for further advancement in aerospace part manufacturing.